随着牛奶厂的畜群大小继续增加,奶牛的自动健康监测是兴趣的。通过分析奶牛的步态,通常检测到乳制品奶牛中普遍存在的健康障碍。可以使用姿势估计模型在视频中追踪牛的步态,因为模型学会自动本地化图像和视频的解剖标志。大多数动物姿势估计模型是静态的,也就是说,视频是通过帧进行处理的帧,并且不使用任何时间信息。在这项工作中,用于动物姿态估计的静态深度学习模型扩展到包括来自过去框架的信息的时间模型。我们比较了静态和时间姿势估计模型的性能。这些数据由来自通过室外通道的30个不同乳制品牛的视频(30 fps)提取的459个三个连续帧。随着农场环境易于闭塞,我们通过向视频添加人工闭塞来测试静态和时间模型的稳健性。实验表明,在非闭塞数据中,静态和时间方法都达到了正确关键点的百分比(PCKH @ 0.2)99%。在遮挡数据上,我们的时间方法优于静态,高达32.9%,表明使用时间数据有利于易于闭塞的环境中的姿势估计,例如乳制品农场。通过在包含未知奶牛的数据(培训集中不存在的奶牛)上测试了时间模型的泛化能力。结果表明,普通PCKH@0.2在已知的奶牛上为93.8%,在未知的奶牛上为87.6%,表明该模型能够概括为新奶牛,并且它们可以很容易地微调到新牛群。最后,我们展示了更难的任务,例如遮挡和未知的奶牛,更深层次的建筑更有益。
translated by 谷歌翻译
在热情好客中,营销部门使用分段创建量身定制的策略,以确保个性化营销。本研究通过分层群集基于广泛的功能,通过分段群集来提供数据驱动方法。该行业需要可理解的结果,为营销部门提供了适应性,使数据驱动的决策和最终驾驶利润。营销部门指定了一个引导无监督机器学习算法的业务问题。客人的特色随着时间的推移而变化;因此,客人将从一个段转换为另一个段的概率。该研究的目的是提供从原始数据到可操作见解的过程中的步骤,该洞察力是热情好客公司如何采用算法方法的指导。
translated by 谷歌翻译
We present the interpretable meta neural ordinary differential equation (iMODE) method to rapidly learn generalizable (i.e., not parameter-specific) dynamics from trajectories of multiple dynamical systems that vary in their physical parameters. The iMODE method learns meta-knowledge, the functional variations of the force field of dynamical system instances without knowing the physical parameters, by adopting a bi-level optimization framework: an outer level capturing the common force field form among studied dynamical system instances and an inner level adapting to individual system instances. A priori physical knowledge can be conveniently embedded in the neural network architecture as inductive bias, such as conservative force field and Euclidean symmetry. With the learned meta-knowledge, iMODE can model an unseen system within seconds, and inversely reveal knowledge on the physical parameters of a system, or as a Neural Gauge to "measure" the physical parameters of an unseen system with observed trajectories. We test the validity of the iMODE method on bistable, double pendulum, Van der Pol, Slinky, and reaction-diffusion systems.
translated by 谷歌翻译
Recent advancements in sensing and communication facilitate obtaining high-frequency real-time data from various physical systems like power networks, climate systems, biological networks, etc. However, since the data are recorded by physical sensors, it is natural that the obtained data is corrupted by measurement noise. In this paper, we present a novel algorithm for online real-time learning of dynamical systems from noisy time-series data, which employs the Robust Koopman operator framework to mitigate the effect of measurement noise. The proposed algorithm has three main advantages: a) it allows for online real-time monitoring of a dynamical system; b) it obtains a linear representation of the underlying dynamical system, thus enabling the user to use linear systems theory for analysis and control of the system; c) it is computationally fast and less intensive than the popular Extended Dynamic Mode Decomposition (EDMD) algorithm. We illustrate the efficiency of the proposed algorithm by applying it to identify the Van der Pol oscillator, the IEEE 68 bus system, and a ring network of Van der Pol oscillators.
translated by 谷歌翻译
We introduce PRISM, a method for real-time filtering in a probabilistic generative model of agent motion and visual perception. Previous approaches either lack uncertainty estimates for the map and agent state, do not run in real-time, do not have a dense scene representation or do not model agent dynamics. Our solution reconciles all of these aspects. We start from a predefined state-space model which combines differentiable rendering and 6-DoF dynamics. Probabilistic inference in this model amounts to simultaneous localisation and mapping (SLAM) and is intractable. We use a series of approximations to Bayesian inference to arrive at probabilistic map and state estimates. We take advantage of well-established methods and closed-form updates, preserving accuracy and enabling real-time capability. The proposed solution runs at 10Hz real-time and is similarly accurate to state-of-the-art SLAM in small to medium-sized indoor environments, with high-speed UAV and handheld camera agents (Blackbird, EuRoC and TUM-RGBD).
translated by 谷歌翻译
Strategic test allocation plays a major role in the control of both emerging and existing pandemics (e.g., COVID-19, HIV). Widespread testing supports effective epidemic control by (1) reducing transmission via identifying cases, and (2) tracking outbreak dynamics to inform targeted interventions. However, infectious disease surveillance presents unique statistical challenges. For instance, the true outcome of interest - one's positive infectious status, is often a latent variable. In addition, presence of both network and temporal dependence reduces the data to a single observation. As testing entire populations regularly is neither efficient nor feasible, standard approaches to testing recommend simple rule-based testing strategies (e.g., symptom based, contact tracing), without taking into account individual risk. In this work, we study an adaptive sequential design involving n individuals over a period of {\tau} time-steps, which allows for unspecified dependence among individuals and across time. Our causal target parameter is the mean latent outcome we would have obtained after one time-step, if, starting at time t given the observed past, we had carried out a stochastic intervention that maximizes the outcome under a resource constraint. We propose an Online Super Learner for adaptive sequential surveillance that learns the optimal choice of tests strategies over time while adapting to the current state of the outbreak. Relying on a series of working models, the proposed method learns across samples, through time, or both: based on the underlying (unknown) structure in the data. We present an identification result for the latent outcome in terms of the observed data, and demonstrate the superior performance of the proposed strategy in a simulation modeling a residential university environment during the COVID-19 pandemic.
translated by 谷歌翻译
Causal deep learning (CDL) is a new and important research area in the larger field of machine learning. With CDL, researchers aim to structure and encode causal knowledge in the extremely flexible representation space of deep learning models. Doing so will lead to more informed, robust, and general predictions and inference -- which is important! However, CDL is still in its infancy. For example, it is not clear how we ought to compare different methods as they are so different in their output, the way they encode causal knowledge, or even how they represent this knowledge. This is a living paper that categorises methods in causal deep learning beyond Pearl's ladder of causation. We refine the rungs in Pearl's ladder, while also adding a separate dimension that categorises the parametric assumptions of both input and representation, arriving at the map of causal deep learning. Our map covers machine learning disciplines such as supervised learning, reinforcement learning, generative modelling and beyond. Our paradigm is a tool which helps researchers to: find benchmarks, compare methods, and most importantly: identify research gaps. With this work we aim to structure the avalanche of papers being published on causal deep learning. While papers on the topic are being published daily, our map remains fixed. We open-source our map for others to use as they see fit: perhaps to offer guidance in a related works section, or to better highlight the contribution of their paper.
translated by 谷歌翻译
Front-door adjustment is a classic technique to estimate causal effects from a specified directed acyclic graph (DAG) and observed data. The advantage of this approach is that it uses observed mediators to identify causal effects, which is possible even in the presence of unobserved confounding. While the statistical properties of the front-door estimation are quite well understood, its algorithmic aspects remained unexplored for a long time. Recently, Jeong, Tian, and Barenboim [NeurIPS 2022] have presented the first polynomial-time algorithm for finding sets satisfying the front-door criterion in a given DAG, with an $O(n^3(n+m))$ run time, where $n$ denotes the number of variables and $m$ the number of edges of the graph. In our work, we give the first linear-time, i.e. $O(n+m)$, algorithm for this task, which thus reaches the asymptotically optimal time complexity, as the size of the input is $\Omega(n+m)$. We also provide an algorithm to enumerate all front-door adjustment sets in a given DAG with delay $O(n(n + m))$. These results improve the algorithms by Jeong et al. [2022] for the two tasks by a factor of $n^3$, respectively.
translated by 谷歌翻译
Multi-robot manipulation tasks involve various control entities that can be separated into dynamically independent parts. A typical example of such real-world tasks is dual-arm manipulation. Learning to naively solve such tasks with reinforcement learning is often unfeasible due to the sample complexity and exploration requirements growing with the dimensionality of the action and state spaces. Instead, we would like to handle such environments as multi-agent systems and have several agents control parts of the whole. However, decentralizing the generation of actions requires coordination across agents through a channel limited to information central to the task. This paper proposes an approach to coordinating multi-robot manipulation through learned latent action spaces that are shared across different agents. We validate our method in simulated multi-robot manipulation tasks and demonstrate improvement over previous baselines in terms of sample efficiency and learning performance.
translated by 谷歌翻译
Bayesian Optimization is a useful tool for experiment design. Unfortunately, the classical, sequential setting of Bayesian Optimization does not translate well into laboratory experiments, for instance battery design, where measurements may come from different sources and their evaluations may require significant waiting times. Multi-fidelity Bayesian Optimization addresses the setting with measurements from different sources. Asynchronous batch Bayesian Optimization provides a framework to select new experiments before the results of the prior experiments are revealed. This paper proposes an algorithm combining multi-fidelity and asynchronous batch methods. We empirically study the algorithm behavior, and show it can outperform single-fidelity batch methods and multi-fidelity sequential methods. As an application, we consider designing electrode materials for optimal performance in pouch cells using experiments with coin cells to approximate battery performance.
translated by 谷歌翻译